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Abstract. The dynamics of fission has been formulated by generalising the asymptotic expansion of the
Fokker-Planck equation in terms of the strength of the fluctuations where the diffusion coefficients depend
on the stochastic variables explicitly. The prescission neutron multiplicities and mean kinetic energies
of the evaporated neutrons have been calculated and compared with the respective experimental data
over a wide range of excitation energy and compound nuclear mass. The mean and the variance of the
total kinetic energies of the fission fragments have been calculated and compared with the experimental
values.

PACS. 25.70.Jj Fusion and fusion-fission reaction – 25.70.Gh Compound nucleus

1 Introduction

At present, it is commonly agreed upon that the fission
process is a dissipative phenomena, where initial energy of
the collective variables get dissipated into the internal de-
grees of freedom of nuclear fluid giving rise to the increase
in internal excitation energy. As dissipation is referred to
the interaction of the system coordinate with the large
number of degrees of freedom of the surrounding reser-
voir, this process is always associated with the fluctua-
tions of relevant physical observables. Thus, the dynamics
of fission process resembles the standard Brownian mo-
tion problem, where the collective variables such as shape
degrees of freedom act as ’Brownian particles’ interacting
stochastically with large number of internal nucleonic de-
grees of freedom constituting the surrounding ’bath’. This
mesoscopic description is inevitable once the fluctuations
of the observables are amenable to experimental observa-
tion.

There have been several attempts in the past to study
the dynamics of fission by solving either the Langevin
equation [1–4], or multidimensional Fokker-Planck equa-
tion [5–8], which is a differential version of Langevin equa-
tion. In the case of fission, it is experimentally observed
that the variances of the physical observables are, in gen-
eral, small compared to their respective mean values (typ-
ically, the ratio of the root mean square deviation and
the mean of the kinetic energy is ∼ 0.1). The question
naturally arises whether one can utilise this simple fact
in the theoretical scheme instead of solving the Langevin
equation (LE) or corresponding Fokker-Planck equation in
detail. In this spirit, we present an alternative theoretical

prescription for the calculation of various moments of the
physical observables related to the fission process based on
the assumption that the full solution of the Fokker-Planck
equation (FPE) admits an asymptotic expansion in terms
of strength of the fluctuations. The asymptotic expansion
method was first developed by van Kampen [9] for the
stochastic processes having constant diffusion coefficients.
However, a generalisation of the above prescription is nec-
essary in the case of fission where the dissipation is usually
assumed to depend on the instantaneous shape of the fis-
sioning system and therefore the diffusion coefficients are
also shape dependent. To the best of our knowledge, such
an application in the case of fission is not available in the
literature.

In the present paper, we report a generalised for-
mulation of the asymptotic expansion of the Fokker-
Planck equation where the diffusion coefficient depends
on the stochastic variables explicitly. In this formula-
tion the dynamics of the stochastic processes reduces
to a set of linear ordinary differential equations which
are far simpler to solve as compared to either multidi-
mensional partial differential (Fokker-Planck) equations
or stochastic differential (Langevin) equations. Presently,
we apply this formulation to calculate the various mo-
ments of the relevent physical observables of the fission
process.

The paper is organised as follows.The generalised for-
mulation and its application to the dynamics of fission is
given in Sect. 2. The calculations and numerical results
are discussed in Sect. 3. Finally, concluding remarks are
given in Sect. 4.
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2 Asymptotic expansion of the Fokker-Planck
equation

2.1 The formalism

The mesoscopic description of the fission process begins
with a set of Langevin equations:

Ẋi = hi({X}, {Y }) + ηi(t) (1a)

Ẏi = Hi({X}, {Y }) ; i = 1, ..., N (1b)

where hi and Hi are given functions of the stochastic col-
lective variables X1, X2, ..., XN and Y1, Y2, ..., YN in the
fission process and ηi(t) refers to the driving noise term as-
sociated with the interaction of the ith collective variable
with the reservoir constituting nucleonic degrees of free-
dom. For simplicity, we assume the noise to be a gaussian
white with zero mean and decoupled for different degrees
of freedom with auto-correlation functions given by

< ηi(t) >= 0, < ηi(t)ηj(t′) >= Di(yi)δ(t− t′)δij , (2)

where Di(yi) is the diffusion coefficient associated with
ith variable, depending only on the sample space yi for
the stochastic variable Yi.

The Fokker-Planck equation corresponding to the
Langevin (1) is

∂f({x}, {y}, t)
∂t

= −
∑
i

[
∂(hif)
∂xi

+
∂(Hif)
∂yi

−(1/2)Di(yi)
∂2f

∂x2
i

]. (3)

The quantity f({x}, {y}, t) is the probability density func-
tion depending on the variables x1, x2, ..., xN , y1, y2, ..., yN
and time t explicitly. If we are interested in finding the
time evolution of the conditional probability distribution
function then we have to solve (3) with initial values
xi(0) = x0

i , yi(0) = y0
i , ∀i, at t = 0. That is, we have to

solve (3) for those realisations which are known to start
from these specific points in the whole sample space.

In the cases where diffusion coefficient is constant the
asymptotic expansion method of van Kampen [9] consists
of writing the stochastic variables as the sum of determin-
istic value and a fluctuating part at each time t with root
of the diffusion constant as a strength of the fluctuating
part. In the present paper, we generalise this method for
the situations where the diffusion coefficients depend on
the stochastic variables explicitly. Such a situation is en-
countered in the case of fission process, where the friction
coefficient depends explicitly on the collective variable or
shape of the nucleus at each instant of time. In this case,
we further assume that, in the asymptotic expansion, the
strengths of the fluctuating parts of the stochastic vari-
ables depend only on the deterministic values of the re-
spective y variables:

xi = x̄i +
√
D(ȳi)ζi (4a)

yi = ȳi +
√
D(ȳi)ξi (4b)

The quantities {ζi}, {ξi} refer to the fluctuations of
the stochastic variables {xi} and {yi} around their de-
terministic values {x̄i}, {ȳi}. Next, we introduce the new
distribution function Q depending only on the variables
{ζi},{ξi} and t. The normalisation condition suggests that
the f and Q will be related by

f({x}, {y}, t) =
N∏
i=1

[Di(ȳi)]−1Qi(ζi, ξi, t) (5)

Substituting (4) in the Fokker-Planck (3), making Taylor
expansion of h({x}, {y}), H({x}, {y}) around {x̄}, {ȳ} and
collecting coefficients of various order of D(ȳi),we could
generate a hierarchy of equations. As expected, the first
set would give rise to the equation of motion for {x̄} and
{ȳ}.

˙̄xi = hi({x̄}, {ȳ}) (6a)
˙̄yi = Hi({x̄}, {ȳ}) ;∀i (6b)

(6) are the Euler-Lagrange equation for deterministic mo-
tion. These equations are to be solved with initial con-
ditions {x̄(0)} = {x0}, {ȳ(0)} = {y0}. Next, we are go-
ing to calculate the conditional probability distribution
f({x}, {y}, t | {x0}, {y0}, 0) or Q({ζ}, {ξ}, t | 0, 0, 0).

Assuming the variation of diffusion coefficient over the
narrow width of the distribution function at any instant
of time to be ©(D), we could replace the second Fokker-
Planck coefficient D(y) by D(ȳ) at each instant of time.
This assumption makes the calculation extremely sim-
ple. Collecting coefficients©(D0), we get back quasilinear
Fokker-Planck equation for Q:

∂Q

∂t
+
∑
i

(
Ḋ(ȳi)
D(ȳi)

)Q = −
∑
i

[ai
∂(ζiQ)
∂ζi

+ bi
∂(ξiQ)
∂ζi

+ ci
∂(ξiQ)
∂ξi

+ di
∂(ζiQ)
∂ξi

− (1/2)
∂2Q

∂ζ2
i

]

(7)

where ai, bi, ci, di are given by

ai = (
∂h

∂x̄i
)− (

Ḋ(ȳi)
2D(ȳi)

) (8a)

bi = (
∂h

∂ȳi
) (8b)

ci = (
∂H

∂ȳi
)− (

Ḋ(ȳi)
2D(ȳi)

) (8c)

di = (
∂H

∂x̄i
) (8d)

Equation (7) suggests that

Q({ζ}, {ξ}, t) =
∏
j

Qj(ζj , ξj , t) (9)

where the distribution function Qj for each j satisfies the
similar equation written below without the subscript:
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∂Q

∂t
+ (

Ḋ(ȳ)
D(ȳ)

)Q = −[a
∂(ζQ)
∂ζ

+ b
∂(ξQ)
∂ζ

+ c
∂(ξQ)
∂ξ

+d
∂(ζQ)
∂ξ

− (1/2)
∂2Q

∂ζ2
] (10)

subject to the initial condition

Q(ζ, ξ, t = 0) = δ(ζ)δ(ξ) (11)

The solution of (10) is given by

Q(ζ, ξ, t) = [
1

(2π)2
]
∫ ∫

exp− {ikζ + ilξ

+
[g(t)k2 +G(t)l2 + 2C(t)kl]

2D(t)
}dkdl (12)

where g(t), G(t), C(t) satisfy the set of coupled first order
differential equations:

ġ

2
= (

∂h

∂x
)g + (

∂h

∂y
)C +

D

2
(13a)

Ġ

2
= (

∂H

∂y
)G+ (

∂H

∂x
)C (13b)

Ċ = (
∂h

∂x
)C + (

∂h

∂y
)G+ (

∂H

∂y
)C + (

∂H

∂x
)g (13c)

with the initial conditions

g(0) = G(0) = C(0) = 0 (14)

Once Q(ζ, ξ, t) is known, from (9) and (5) the full con-
ditional probability distribution function f({x}, {y}, t |
{x0}, {y0}, 0) is known. Integrating this function over all
variables except one, say xi, one identifies gi(t) as the
variance of the stochastic variable Xi.

〈(Xi − 〈Xi〉)2〉 = gi(t) (15)

We note that the homogeniety of (10) suggests that
〈ζ(t)〉 = 〈ξ(t)〉 = 0, or the average of the variables X and
Y at any time will be determined by their deterministic
values obtained by solving Euler-Lagrange equation (6).
Similarly, one observes from (12),

〈(Xi − 〈Xi〉)(Yi − 〈Yi〉)〉 = Ci(t) (16a)
〈(Yi − 〈Yi〉)2〉 = Gi(t) (16b)

2.2 Application to the fission process

In the fission process, in accordance with our previous
work [10], the shape of the fissioning nucleus is described
in terms of the elongation axis (the neck parameter of
[11] taken equal to zero). Thus, in the dynamical descrip-
tion we have the elongation axis, its relative orientation
with respect to an inertial system and respective velocities
associated with them as the stochastic variables interact-
ing with a large number of internal nucleonic degrees of
freedom constituting a heat bath at temperature T deter-
mined by the excitation energy available to it. We further

assume that the ’collisional’ time scale of the nucleonic
degrees of freedom is much shorter than the time scale of
the macroscopic evolution of the collective variable so that
at each instant of time the heat bath is assumed to be in
quasi-stationary equilibrium.

The Euler-Lagrange equations (6) were solved in our
earlier works [10]. To avoid repetition we deliberately omit
the procedure and scheme to solve those equations. For the
sake of completeness we merely write those equations and
refer to our previous papers to clarify the details.

Giving correspondence to the terminology used in this
paper, we associate

Y1 = r,X1 = ṙ, (17a)

Y2 = θ,X2 = θ̇. (17b)

Thus we have

H1({x, y}) = x1 = ṙ (18a)

h1({r, ṙ}) = [
L2

µr3
− γṙ − ∂(VC + VN )

∂r
]/µ, (18b)

H2({x, y}) = x2 = θ̇, (18c)

h2({θ, θ̇}) = −(I1θ̈1 + I2θ̈2)/I, (18d)

I1θ̈1 = γt[g2(θ̇2 − θ̇) + g1(θ̇1 − θ̇)]g1, (18e)

I2θ̈2 = γt[g2(θ̇2 − θ̇) + g1(θ̇1 − θ̇)]g2. (18f)

The quantities VC , VN represent the Coulomb and nuclear
interaction potentials and γ, γt are the radial and tangen-
tial components of friction, respectively. The nuclear part
of the interaction is approximated by the proximity inter-
action [12]. I1, I2 are the moments of inertia of the two
lobes and L refers to the relative angular momentum. g1

and g2 are the distances of the centres of mass of the two
lobes from the centre of mass of the composite dinuclear
system and the term [g2(θ̇2− θ̇)+g1(θ̇1− θ̇)] represents the
relative tangential velocity of the two lobes. The quanti-
ties I and µ are the moment of inertia and the reduced
mass associated with the fissioning liquid drop, respec-
tively [13].

It has already been shown that the tangential friction
which causes dissipation of relative angular momentum L
into the angular momenta I1, I2 of the two fragments does
not have any significant effect on the physical observables
[10]. Besides, no experimental observation of angular mo-
mentum dispersion of fission fragments are available in the
litterature. Therefore, in the following the calculations of
higher moments are restricted to the radial degree of free-
dom only. For the sake of convenience we omit the sub-
scripts in the functions H and h below.

The variances are obtained by solving (13). The diffu-
sion coefficient D is evaluated employing Einstein’s fluctu-
ation dissipation theorem. Thus, the (13) now becomes,

ġ(t) = 2(
∂h1

∂ṙ
)g(t) + 2(

∂h1

∂r
)C(t) + 2γ(r)T (r)/µ2 (19a)

Ġ(t) = 2C(t) (19b)

Ċ(t) = (
∂h1

∂ṙ
)C(t) + 2(

∂h1

∂r
)G(t) + g(t) (19c)
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with the initial conditions (14). The initial conditions of
r and ṙ for solving (18) are [10]

r0 = r(t = 0) = rmin ± δr0,

ṙ0 = ṙ(t = 0) = (
E∗0RN

2µ
)1/2 (20)

where the potential energy surface around the minimum
is approximated as harmonic oscillator with ω being the
oscillator frequency. At each instant of time, it is assumed
that the state of the nucleus is ameanable to a thermo-
dynamic description with temperature T . Therefore, δr0

in (20), which is taken as the root of the thermal average
of mean quantum dispersion around the minimum of the
potential, is expressed as δr0 = ( ~

2ωµ coth ~ω
2T (r=rmin) )1/2.

The quantity RN is a random number between 0 and 1
from uniform probability distribution and E∗0 is the initial
available energy. The temperature T (r) in (19a) has been
calculated from the instantaneous excitation energy E∗(r)
using the relation T (r) =

√
(E∗(r)/a) with a = A/10. At

each instant, the dissipated energy is added to, and the
energy carried away by the prescission particles (if any) is
subtracted from, the excitation energy which is then used
to calculate the temperature at the next instant.

Solving (18) and (19) simultaneously with initial con-
ditions (14) and (20) we generate the conditional proba-
bility distribution function f(r, ṙ, t | r(t = 0), ṙ(t = 0), 0).
The probability distribution function f(r, ṙ, t) could be
obtained as

f(r, ṙ, t) =
∫
f(r, ṙ, t | r(t = 0),

ṙ(t = 0), 0)f(r(t = 0),
ṙ(t = 0), 0)dr(t = 0)dṙ(t = 0) (21)

where f(r(t = 0), ṙ(t = 0), 0) is the probability distribu-
tion of position and velocity of the stochastic variables at
the initial time. As described by the initial condition (20),
this can be represented as

f(r(t = 0), ṙ(t = 0), 0) = f(r(t = 0))× f(ṙ(t = 0)) (22)

Here, we assumed that each fissioning nucleus in the
ensemble starts from a phase space point decided by dif-
ferent partioning of initial excitation energy [10]. Finally,
substitution of (22) in (21) would give

f(r, ṙ, t) =
∑
RN

f(r, ṙ, t | rmin ± δr0, (
E∗0RN

2µ
)1/2, 0) (23)

The asymptotic expansion in our model thus provides
the following picture: In the zeroth order approximation,
the motion is described by the Euler - Lagrange equa-
tion. This requires the initial momentum as a generator
of motion, which is supplied by a random fraction of initial
available energy E∗0 of the system. This initial randomness
restricts the trajectories to have fission fate thus providing
the crosssection of the residue. The first order approxima-
tion provides mostly the other transport property, namely
the variance of the physical variable. As the approximation

of the distribution function is over the solution of the Eu-
ler - Lagrange equation of motion, this part provides the
observables of the escape part of the distribution. In this
way, this model could describe the bifurcation of the total
distribution function if one would solve the full Fokker -
Planck equation or the Langevin equation.

3 Numerical calculation and results

The applicability of the generalised formalism developed
in Sect. 2 has been tested quite rigorously by confronting
it with a wide range of experimental data on various phys-
ical observables of the fission process. The details of such
calculation procedure has been reported elsewhere [10],
and is given here in brief.

3.1 The shape, friction and dynamics of the fissioning
system

For the present calculation, instantaneous shape of the
fissioning nucleus is taken to be of the form [10,11],

ρ2(z) = c−2(c2 − z2)(A+Bz2 + αzc), (24)

where the coefficients A and B are given by, A = c−1 −
Bc2/5, and B = (c − 1)/2, respectively. The variable
c corresponds to the elongation and α is a parameter
which depends upon the asymmetry (aasy) defined as
aasy = (A1 −A2)/ACN , where ACN is the compound nu-
cleus mass, and A1, A2 correspond to the masses of the
two fragments. The parameter α is related to the asymme-
try aasy through the relation α = .11937a2

asy + .24720aasy
[10]. As the shape changes gradually, the coordinates of
the two maxima and that of the minimum of the sur-
face (24) change. The scission point is defined when the
minimum point touches the z-axis and it is given by
A− c2α2/4B = 0. Therefore, the value of c at which scis-
sion occurs depends on α and the dependence is given by
csc = −2.0α2 + .032α+ 2.0917.

The variable r is defined as the centre to centre dis-
tance between the two lobes. From the generalised shape
given by (24), we first construct the centres of mass of left
and right lobes, and call them zl and zr respectively. Then
r is defined as r = |zl − zr|. The reduced mass parameter
µ, is obtained from the calculated masses of the two lobes.

The temporal evolution of shape of the fissioning nu-
cleus is assumed to start from the minimum of the po-
tential energy surface eventually leading to scission. The
fission trajectories are obtained by solving the Euler-
Lagrange equations with conservative forces derived from
the nuclear and Coulomb potentials [10,13,14]. For the
non-conservative part of the interaction, we would con-
sider viscous drag arising not only due to two body colli-
sion but also due to the collisions of the nucleons with the
wall or surface of the nucleus. Hence γ in (18b) contains
two parts; γTB and γOB , for two-body and one-body dis-
sipative mechanisms, respectively. Assuming the nucleus
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as an incompressible viscous fluid, and for nearly irrota-
tional hydrodynamical flow, γTB is calculated by use of
the Werner-Wheeler method [15,16] and is given by

γTB = πµ0 RCNh(α)f(
∂c

∂x
)
∫ +c

−c
dzρ2[3A

′2
c +

1
8
ρ2A

′′2
c ]

(25a)

where the factor h(α) = exp(−Kα2) is included in order
to explain the observed fragment asymmetry dependence
of neutron multiplicity (for details, see [10]), and,

Ac(z) = − 1
ρ2(z)

∂

∂c

∫ z

−c
dz′ρ2(z′). (25b)

The quantities A′c, A
′′
c are the first and second deriva-

tives of Ac(z) with respect to z. µ0 is the two body vis-
cosity coefficient. The factor f( ∂c∂x ) is taken to be

f(
∂c

∂x
) = (

∂c

∂x
)2 + 2(

∂c

∂x
), (26)

where x = r/RCN , RCN being the radius of the compound
nucleus.

The tangential friction γTBt is calculated using the fol-
lowing relation [10],

γTBt = (
∂c

∂n
)2γTBr , (27)

where n (the value of ρ at the minima of ρ2 in (24)) is the
instantaneous neck radius of the fissioning system.

One body dissipative force, Fdis, is obtained from the
rate of energy dissipation, Edis, by

Fdis = − ∂

∂ẋ
Edis(x) (28)

where ẋ refers to the rate of change of x with respect to
time and Edis(x) is the rate of energy dissipation at x
given by

Edis =
1
2
ρmv̄

∮
dS ėn

2, (29)

where en is the unit normal direction at the surface. The
integration is done over the whole surface. ρm is the nu-
clear density and v̄ is the average nucleonic speed obtained
from the formula

v̄ =
√

(
8k
mπ

)(Eav/a)1/4 (30)

with Eav is the available energy and the level density pa-
rameter, a, is taken to be ACN/10. For the generalised
shape (24), one-body friction, γOB , is obtained as

γOB = 2π ρmv̄R2
CNf(∂c/∂x)

×
∫ +c

−c
dz ρ [1 + ρ′2]−1/2[Acρ′+ (1/2) ρA′c]

2 (31)

where ρ′, A′c are the derivatives of ρ,Ac with respect to z
and all other quantities are defined earlier. The tangential
part of the one-body friction is calculated in a similar
manner as in (27).

The friction forces used in the calculation are taken as
follows [10]. One-body ’wall’ friction has been used in the
ground state to saddle region, where nuclear shapes are
nearly mononuclear. The strength of the one-body friction
used was attenuated to 10% of the original ’wall’ value.
This weakening of the wall friction has also been confirmed
from the study of the role of chaos in dissipative nuclear
dynamics [17]. In the saddle to scission region, on the other
hand, the nuclear dissipation was taken to be of two-body
origin and the value of the viscosity coefficient µ0 used in
the present calculation was (4 ×10−23MeV · sec · fm−3).
This value of µ0 corresponds to 0.06 TP (1TP = 6.24 ×
10−22MeV · sec · fm−3).

3.2 Prescission neutron emission

3.2.1 Prescission Neutron Multiplicities

The emission of the prescission neutrons is simulated in
the following way. During the temporal evolution of the
fission trajectory the intrinsic excitation of the system,
and vis-a-vis, the neutron decay width at each instant,Γn,
is calculated using the relation Γn = ~Wn. The decay rate
Wn is given by,

Wn =
∫ Emax

0

dE
d2Πn

dEdt
, (32)

where, d2Πn/dEdt is the rate of decay A → A − 1 +
n in an energy interval [E,E + dE] and a time interval
[t, t+dt]. The quantity d2Πn/dEdt may be evaluated using
standard expression [10].

The emission of neutrons during the temporal evo-
lution of the trajectory is simulated as follows. At each
time step, the probability of emission of a neutron, τ/τn
(where τn(= ~/Γn), τ are the neutron decay time and the
time step of the calculation, respectively), is computed
and compared with a random number RN from a uniform
probability distribution. The emission of a neutron is as-
sumed to take place, if it satisfies the following criterion
[10];

τ/τn > RN . (33)

If the condition (33) is not satisfied, no emission of
neutron takes place. The time step τ is chosen in such a
way that it satisfies the condition τ/τn ¿ 1. Consequently
the probability of emission of two or more neutrons in time
τ would be extremely small. The calculation is continued
over the whole trajectory for a number of times at each
angular momentum ` to estimate the average prescission
multiplicity at each `. The calculation is then repeated for
all allowed values of angular momentum to compute the
aveage value of prescission neutron multiplicity npre [10].

The calculated values of npre have been displayed in
Fig. 1 alongwith the respective experimental data as a
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Fig. 1. Prescission neutron multiplicities plotted as a function
of the initial excitation energy E∗ini of the compound nuclei of
masses ACN ∼ 150 (upper half), and ACN ∼ 200 (lower half).
The solid curve is the present calculation. Different symbols
correspond to different sets of experimental data, (ie, filled
circle [19], open inverted triangle [19], filled inverted triangle
[18], open triangle [19], filled triangle [20], open diamond [20],
filled diamond [18], open square [18], filled square [18])

function of the initial excitation energy of the compound
nucleus for two different mass regions. The solid curves
are the results of the present calculations and the symbols
correspond to experimental data [18–20]. It is seen that for
heavier systems (ACN ∼ 200) (lower half), the theoretical
predictions are in good agreement with the correspond-
ing experimental data. For lighter systems (ACN ∼ 150)
(upper half), the experimental values of npre have larger
uncertainties and fluctuations, and the theory is seen to
reproduce quite well the average trend of the data. A part
of this fluctuation in neutron emission here may be due
to specific structure effects of different compound sys-
tems; for example, 162Y b (filled diamond) is quite neu-
tron deficient compared to 168Y b (open triangle), and neu-
tron emission from the former is therefore expected to be
somewhat less. Similarly, at high incident energies (> 10
MeV/nucleon) the observed multiplicity (open diamond)
was found to be lower than the average theoretical trend,
which may be due to the noninclusion of the effect of pree-
quilibrium emission in the present calculation.

The fragment mass asymmetry dependence of neu-
tron multiplicity is displayed in Fig. 2 for 18O (Elab =
158.8 MeV ) induced reactions on 154Sm, 197Au and 238U
[18]. The solid circles correspond to the experimental data
and the solid lines are the theoretical predictions of the
same. It is found that the present calculations agree quite
well with the experimental data in all the cases. The value
of the constant K (25a) was found to be 161 ± 3 which

Fig. 2. Prescission neutron multiplicity npre as a function of
fragment mass asymmetry aasyfor 18O induced reactions on
154Sm, 197Au and 238U. Filled circles correpond to the exper-
imental data [18] and the solid curves are the present calcula-
tions

is independent of the mass of the compound system. It
is, therefore, interesting to note that with the inclusion
of the term h(α) in the friction form factor (25a), we
are able to explain the prescission neutron multiplicity
data for both symmetric as well as asymmetric fission
with the same value of the viscosity coefficient, µ0 (=
4× 10−23MeV · sec · fm−3).

3.2.2 Energy of emitted neutrons

The kinetic energy of the emitted neutron is extracted
through random sampling technique [10]. Assuming that
the system is in thermal equilibrium at each instant of
time t, the energy distribution of the emitted neutrons is
represented by a normalised Boltzmann distribution cor-
responding to the instantaneous temperature of the sys-
tem. From a uniformly distributed random number se-
quence {xn} in the interval [0,1], another random num-
ber sequence {yn} with probability distribution f(y) is
constructed, where f(y) ∼ exp(−β(t)y) is a normalised
Boltzmann distribution corresponding to the temperature
β(t) at any instant of time t. Then, the sequence {yn} is
obtained from the sequence {xn} by the relation,

y(x) = F−1(x). (34)

Here, F−1 is the inverse of the function F (y) = x =∫ y
0
f(y)dy, which is computed numerically by forming a

table of integral values. The energy of the emitted neutron
is given by En = yEmaxn , where Emaxn is chosen in such
a way that the Boltzmann probability at that energy is
negligible for all instants of time t. After the emission of
the neutron, the intrinsic excitation energy is recalculated
and the trajectory is continued.
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Fig. 3. Mean energy of the evaporated neutrons (< En >)
plotted as a function of ACN . The solid curves are the present
calculations, and the filled circles are the corresponding data
[18]

The average energy of the prescission neutrons, <
En > has been plotted as a function of the compound
nuclear mass, ACN , in Fig. 3. It is seen from the figure
that the theoretical predictions of < En > (solid curve)
are in good agreement with the respective experimental
data (filled circles).

3.3 Average and variance of TKE

The temporal evolutions of the variables g(t), C(t), G(t)
along the fission trajectory have been computed for a rep-
resentative system 16O + 124Sn and the results are plotted
in Fig. 4. It is seen from the figure that, initially, all of
them increase steeply and then their magnitudes become
nearly constant throughout the rest of the trajectory. Fur-
thermore, the calculation shows that C2(t)/g(t)G(t)¿ 1,
which implies that the correlation of position and velocity
of the elongation variable (r) is much smaller compared
to their respective variances. The variance of energy and
average of total kinetic energy (TKE) at scission point are
given by,

σ2
E = (µṙ)2g(t) + [∂(VC + VN )/∂r]2G(t), (35a)

〈E(t)〉 = µg(tsc)/2 + Edet. (35b)

The contribution of term (typically ∼ 2µṙ(∂(VC
+VN )/∂r)C(t) ) involving the correlation between posi-
tion and velocity has been neglected in (35a) as it is quite
small compared to the other terms invoving the variances
of position and velocity. The quantity tsc is the time at
scission point and Edet is the deterministic value of total
fragment kinetic energy (TKE) after scission and ∼ 100 -
200 MeV. It is assumed that the variation of the potential
over the narrow width of the probability distribution is
small so that the average of the potential is approximated
as the value of the potential at the mean position. The
variation of the kinetic energy variance σ2

E as a function
of time has also been displayed in Fig. 4. The value of
σ2
E is also seen to increase steeply at the beginning and

then it becomes nearly constant throughout the rest of the
time. As envisaged earlier, the result clearly shows that
σE/〈E〉 ¿ 1, which demonstrates the validity of asymp-
totic expansion in deriving the result instead of solving
the Fokker-Planck equation in detail.

Fig. 4. Variation of (a) g(t), (b) C(t), (c) G(t) and (d) σ2
E as

a function of time t for the system 16O+124Sn

The theoretical predictions of σE(th) and mean total
kinetic energy (TKE) (solid curves) for the fission of sev-
eral compound systems produced in the 158.8 MeV 18O,
288 MeV 16O induced reactions on various targets have
been displayed in Figs. 5a, 5b, respectively, alongwith the
experimental data [18] (filled circles). From the figure it is
observed that theoretical predictions of TKE agree quite
well with the respective experimental data for all the sys-
tems studied. However, it may be noted here, that the
experimental values of σE(exp) are usually obtained by
averaging over the full mass yield spectrum. Therefore,
σE(exp) consists of two terms, viz., (i) contributions aris-
ing due to stochastic fluctuations in the dynamics of fission
process,σE , and (ii) contributions from the variation of the
mean kinetic energy with the fragment mass asymmetry,
σE(kin). So, σE(exp) may be written as [21],

σ2
E(exp) = σ2

E + σ2
E(kin), (36a)

σ2
E =

∑
A1

σ2
E(A1, A2) · Y (A1), (36b)

σ2
E(kin) =

∑
A1

[Ē − 〈E(A1, A2)〉]2 · Y (A1). (36c)

Here σ2
E(A1, A2) and 〈E(A1, A2)〉 are the variances

and mean values of the total kinetic energy of two fis-
sion fragments with mass numbers A1 and A2 (compound
nucleus mass ACN = A1 + A2), Ē being the average
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Fig. 5. Variation of σE and mean TKE as function of target
mass number AT , for (a) 158.8 MeV 18O, and (b) 288 MeV
16O induced fission reactions. Filled circles correspond to the
experimental data [18] and solid curves are the present theo-
retical results. Open triangles are the values of σE obtained
using (36) (see text)

of 〈E(A1, A2)〉 over the normalised fragment mass yield,
Y (A1) with

∑
A1
Y (A1) = 1. Thus, the calculated value of

σ2
E(th) is then compared with the stochastic component

of the experimental variance, i.e., σ2
E , which is obtained

after substracting σ2
E(kin) from σ2

E(exp) (as mentioned
above).

We have extracted σ2
E(kin) for a few systems for which

the experimental fragment mass yield data are available
[18], taking 〈E(A1, A2)〉 from Viola systematics [22]. The
values σE , i.e.,

√
(σ2
E(exp)− σ2

E(kin)) , are shown in
Fig. 5 as open triangles and they agree very well with the
predicted values of TKE variance. It is seen from Fig. 5a
that when the projectile energy (and vis-a-vis the exci-
tation energy of the fused composite) is relatively lower,
the calculated values are in fair agreement with the data.
However, the calculation underpredicts the experimental
value of σE for the heaviest target considered (238U in the
present case). With the increase in the projectile energy
(and the excitation energy of the composite), the theoreti-
cal predictions are found to underestimate the correspond-
ing experimental values and the discrepancy between the
two increases with the increase in mass number (Fig. 5b),.

We have also studied the fragment mass asymmetry
dependence of energy variance, σ2

E(A1, A2) for some rep-
resentative systems and the results are displayed in Fig. 6.
It is seen from Fig. 6 that the theoretical values of vari-
ances have only a weak dependence on the fragment mass
asymmetry.

4 Summary and conclusions

We have developed a generalised formulation of asymp-
totic expansion of the Fokker-Planck equation for the
systems where the diffusion coefficient depends on the
stochastic variable explicitly. With the assumption that
the relative fluctuation of collective variable is small we
have derived the equation for various moments. The for-
malism is applied to the case of fission where the fluctu-

Fig. 6. Variation of predicted values of σE as a function of
fragment mass asymmetry, asym = |A1 −A2|/ACN

ation in total kinetic energy is small as compared to its
mean value. We have taken only one degree of freedom,
namely the elongation axis in our calculation. However,
one could incorporate neck degree of freedom also in a
more realistic calculation based on the present formalism.
The primary motivation of the present work is to show
that this formalism could explain the basic features of the
fission dynamics quite satisfactorily without invoking the
solution of Fokker- Planck equation or Langevin equation
in detail.

The present model is found to explain fairly well the
observed neutron multiplicities and their fragment mass
asymmetry dependence as well as the average energy of
the evaporated neutrons over a wide range of mass and
excitation energies of the compound system with a single
value of the viscosity coefficient, µ0. The predicted values
of TKE are found to be in good agreement with the exper-
imental data and the theoretical estimates of the associ-
ated TKE variances are also found to agree quite well with
the respective numbers extracted from the experimental
data for the systems where the fragment mass yield data
are available. For a more direct test of theoretical models
it is necessary that experimental estimation of variances
should not have admixture of other contributions arising
due to the variation of mean kinetic energy over different
mass yields. This may be achieved if measurements are
done in smaller mass bins.

In the present studies, the correlation of the position
and velocity of the elongation axis has been found to
be small. However, in the cases where such condition is
not valid the energy variance still can be calculated by
adding a term 2µṙ(∂(VC + VN )/∂r)C(t). The procedure
developed here could systematically generate higher or-
der hierarchies for relatively larger fluctuations than the
ones encountered in the present studies. In those cases one



A.K. Dhara et al.: Dissipative dynamics of fission in the framework of asymptotic expansion 217

may have to solve the higher order equation which would
involve higher order derivatives of the functions h(x, y)
andH(x, y), in general.
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